

Network Schedule Optimization Extensions Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management

M.Sc. Program

Network, Fleet and Schedule Strategic Planning Module 14 : 12 March 2014

Lecture Outline

Itinerary-based Network Fleet Assignment

- Network Effects on Evaluating Spill
- IFAM Definition and Formulation
- Opportunities for Further Model Improvement

Dynamic Fleet Assignment

- Demand Driven Dispatch
- Requirements and Implementation Issues

Crew Scheduling Optimization

- Definitions and Constraints
- Crew Pairing Problem

Leg-Based Fleet Assignment Optimization

- The fleet assignment models examined thus far have assumed independent demand and spill on each leg
 - In essence, all demand on each leg assumed to be local
 - Changing capacity assumed to affect only demand on that leg, and revenue impact based on fares paid by local demand
 - Certainly not true in a large connecting hub network
- Several network optimization models were presented, but leg independence was still assumed
 - "Network" fleet assignment optimization referred to ensuring a balance of aircraft types and feasible rotations of aircraft

Calculation of Network Spill

Which 5 passengers should be spilled on the IST-JFK flight leg?

Prorated Calculation of Network Spill

Itinerary-based Fleet Assignment Definition

• Given

- a fixed schedule,
- number of available aircraft of different types,
- unconstrained passenger demands by itinerary, and
- recapture rates,

Find maximum contribution

Network effects

Itinerary-Based FAM (IFAM)

Kniker (1998)

SOURCE: Prof. C. Barnhart

Moving from FAM to IFAM: Challenges

• IFAM, unlike FAM, has:

- Extensive data requirements
 - → Itinerary-specific demands
 - → Recapture rates
- Immense model size
 - → One decision variable for every pair of itineraries for which spill can occur
 - → One constraint for each itinerary
- Tractability issues associated with model
 - → Constraints linking supply (provision of seat capacity) with demand for seats

Opportunities for Improvement: FAM

- Adjust the capacity on flight legs during the booking process to better match actual bookings with supply by "swapping" aircraft
- Re-assigning available aircraft within the same fleet family
 - Maintaining crew feasibility
 - Maintaining conservation of flow (or balance) by fleet type
 - Maintaining satisfaction of maintenance constraints
- Also known as "Demand Driven Dispatch"
 - Concept developed by Boeing in search of "elastic" airplane
 - Made practical by fleet commonality in aircraft families

- Dynamic fleet assignment when demand varies daily on each flight leg during a schedule period
 - Assign the right size airplane to each departure based on actual booking patterns
 - If bookings are forecast to be higher than average, opportunity to increase capacity for that departure
 - If bookings are forecast to be much lower than planned, reducing aircraft size can reduce total operating costs

• Requirements for Demand Driven Dispatch (or D³)

- RM system that generates accurate forecasts of demand for each future flight departure date
- Common-rated family of aircraft allows for swapping of aircraft assignments closer to departure without disturbing crew schedules

Operating Costs Differ by Aircraft Size

Airplane Operating Costs

Identify potential swaps based on RM forecasts

- One flight with excess demand (greater than capacity) and another with excess capacity expected at departure
- Both flights scheduled to depart at approximately the same time from the same airport – connecting hubs increase this potential

Assess benefits of executing the swap

- Revenue gain from assigning a larger aircraft to the flight with excess demand vs. possible spill on flight with smaller aircraft
- Even if no revenue gains, reductions in operating costs can be achieved if both flights have excess capacity – assign smaller aircraft to the longer flight

Implementation Issues for D³

- Crew scheduling problems can be overcome with common-rated fleet families
 - But, larger aircraft might require additional flight attendant
- Maintenance plans need to be maintained
 - Swapped aircraft must return to maintenance base as scheduled
- Ground handling and catering issues
 - Close-in swaps tend to disrupt gate assignments and ground operations routines
- Passenger service issues
 - Specific aircraft type not specified until a few days before departure
 - Imposes constraints on advance seat assignment

Airline Crew Scheduling

Reference: C. Barnhart, A. Cohn, E. Johnson, D. Klabjan, G. Nemhauser, and P. Vance. 2003. "Airline Crew Scheduling". Randolph W. Hall, ed. Handbook of Transportation Science, 2nd ed.

Definitions

- A *duty period* (or *duty*) is a sequence of flight legs comprising a day of work for a crew
- A *crew pairing* is a sequence of *duties* separated by rest periods:
 - beginning and ending at a crew base
 - spanning one or more days
 - satisfying regulations and collective bargaining agreements, such as:
 - → maximum flying time in a day
 - → minimum rest requirements
 - → minimum connection time between two flights

Example: Duty Periods

Pairing = DP1(a,b,c) + rest + DP2(d,e) + rest + DP3(f)

SOURCE: Prof. C. Barnhart

Airline Crew Scheduling

• 2-stage process:

Crew Pairing Optimization

 Construct minimum cost work schedules, called pairings, spanning several days

Bidline Generation/ Rostering

- Construct monthly work schedules from the pairings generated in the first stage
 - → Bidlines
 - → Individualized schedules
- Objective to balance workload, maximize number of crew requests granted, etc.

Crew Pairing Costs

- Duty costs: *Maximum* of 3 elements:
 - f1*flying time cost
 - f2*elapsed time cost
 - *f3**minimum guarantee
- Pairing costs: *Maximum* of 3 elements:
 - f1*duty cost
 - f2*time-away-from-base
 - *f3**minimum guarantee

Crew Pairing Problem

Constraints on feasible pairings

- Flights connect in space and time
- Minimum/Maximum connection times
- Regulatory constraints
 - » Maximum duty duration
 - > Minimum rest duration between duties
 - > 8-in-24 rule
 - Maximum time-away-from-base (TAFB)

• Potentially, many billions of pairings

Problem Size and Solutions

- A typical global airline (hub-and-spoke) has millions (or billions) of potential pairings
 - 150 daily flights90,000 pairings
 - 250 daily flights6,000,000 pairings
- Crews are the second highest component of aircraft operating costs (after fuel).
- The introduction of OR decision support tools has reduced the amount of pay & credit at some airlines by 50%.

Integration of Schedule Optimization Models

SOURCE: Prof. C. Barnhart

- 1. Integrating decisions involving schedule design and aircraft and crew routing and scheduling
- 2. Expanding schedule planning models to include pricing and revenue management decisions
- 3. Robust schedule planning to allow for disruptions and delays
- 4. Operations recovery after schedule disruptions